
Self-Propelled motionを行う球体に対する Starting Problem

名古屋大学大学院多元数理科学研究科

濱松寛地 (Kanchi Hamamatsu)

概要

３次元空間に１つの球体が存在し, その外部が非圧縮性粘性流体で満たされている状況で, 流れとの相互

作用による球体の self-propelled motionについて考える. 本講演ではこの self-propelled motionに対す

る starting problemの研究によって得られた結果を紹介する.

1 導入

本講演では, 私が現在研究を行っている self-propelled motionを行う球体に対する starting problemにつ

いて得られた結果を紹介する. Starting problemとは Finn[2]によって提唱された問題で, 非圧縮性粘性流体

で 3次元空間中に剛体が一つある状況を考え, 初期時刻で静止した剛体の並進速度が徐々に上昇し, ある時刻

以降は一定の並進速度となるとき, 流れの長時間挙動について剛体の最終的な並進速度で決まるような定常解

に収束するかどうかを問うものである. この問題が肯定的に解かれる時, その定常解は attainable と呼ばれ

る. この starting problem は Kobayashi-Shibata[6] による線型化方程式の初期値問題の生成する Oseen 半

群の Lp-Lq 評価が証明されたことを受けて, Galdi-Heywood-Shibata[3]によって解決された. Takahashi[8]

によって, starting problemでの摂動の t → ∞での減衰率は安定性問題でのそれよりも速いことが示された.

また, 剛体の回転運動に対する starting problemについては Takahashi[9]によって解決された.

彼らの研究ではいずれも剛体の運動は既知であることが仮定されているが, 今回扱う self-propelled motion

では剛体の運動は未知であり流体の運動と相互作用を行う. Self-propelled motionとは, 剛体の運動が外力の

作用に依らず, 剛体自身に内在する運動メカニズム及び流体との相互作用によってのみ定まる運動をいう. 剛

体に内在する運動メカニズムを表す境界上の速度を extra velocityと呼ぶ. そこで, self-propelled motionに

対する starting problem として, 初期時刻で剛体と流体がともに静止した状態から extra velocity が徐々に

上昇し, ある時刻以降で extra velocityが時刻に依らない (または時間周期的な)関数となるとき, 流れの長時

間挙動が最終的な extra velocity で決まるような定常 (または時間周期)self-propelled motion に収束するか

どうかについて考える. Self-propelled motionに対する starting problemについての先行研究は Silvestre[7]

によるものがある。彼女は剛体と流れがともに軸対称である場合の self-propelled motionに対する starting

problemについての研究を行った. この研究は self-propelled motionに対する starting problemの唯一の先

行研究である. 本講演では剛体が球体である場合の self-propelled motionに対する starting problemを扱い,

剛体の形状に関しては Silvestreよりも強い仮定をしているが、流れは軸対称でなくでもよいという点で彼女

の研究と異なっている.



いま, 球体は半径が 1, 密度が ρ > 0 とし, 平行移動によって原点をこの球体の中心に固定する. また,

B := {x ∈ R3; |x| < 1}, Ω := {x ∈ R3; |x| > 1} とし, それぞれ球体, 流体の占めている空間を表す. い

ま, 球体の extra velocity u∗(x, t) ∈ R3 による self-propelled motion とその周りでの流れは, 流体の速度

u∞(x, t) ∈ R3, 圧力 p∞(x, t) ∈ R, 球体の並進速度 η∞(t) ∈ R3, 回転角速度 ω∞(t) ∈ R3 を未知関数として次

に従う: 

∂tu∞ + (u∞ − η∞) · ∇u∞ = ∆u∞ −∇p∞,
div u∞ = 0,

m
dη∞
dt

+

∫
∂Ω

S(u∞, p∞)νdσ = 0,

J
dω∞

dt
+

∫
∂Ω

x× S(u∞, p∞)νdσ = 0,

u∞ → 0 (|x| → ∞),

u∞|∂Ω = η∞ + ω∞ × x+ u∗.

(1.1)

ここで, mは球体の質量, J は慣性モーメントテンソル, Sは応力テンソルを表す. すなわち,

m =
4π

3
ρ, J =

2

5
mI,

S(u∞, p∞) = 2Du∞ − p∞I, Du∞ =
∇u∞ + (∇u∞)T

2
.

また, (1.1) の第一, 二式は Navier-Stokes 方程式, 第三式は運動量保存則, 第四式は角運動量保存則を表す.

(1.1)の解で最も重要なものは定常解と時間周期解である.

次に非負値単調非減少関数 ψ ∈ C1+θ0([0,∞)) (θ0 ∈ (0, 1))は ψ(0) = 0, ψ(t) = 1(t ≥ 1)を満たすとし,

M := sup[0,∞) |ψ′(t)|とする. もしも, 流体と球体が初期時刻で静止しており, extra velocity ψ(t)u∗(x, t)で

self-propelled motion を行う場合, 流速を ũ, 圧力 p̃, 並進速度 η̃, 回転角速度 ω̃ とすると次の式が成り立つ:

∂tũ+ (ũ− η̃) · ∇ũ = ∆ũ−∇p̃,
div ũ = 0,

m
dη̃

dt
+

∫
∂Ω

S(ũ, p̃)νdσ = 0,

J
dω̃

dt
+

∫
∂Ω

x× S(ũ, p̃)νdσ = 0,

ũ→ 0 (|x| → ∞),

ũ|∂Ω = η̃ + ω̃ × x+ ψu∗,

ũ(x, 0) = 0, η̃(0) = ω̃(0) = 0.

これらに対して
u = ũ− ψu∞, p = p̃− ψp∞, η = η̃ − ψη∞, ω = ω̃ − ψω∞



とおくと, {u, p, η, ω}は次の式に従う:

∂tu+ ψ(u∞ − η∞) · ∇u−∆u+∇p,
= −(u− η) · ∇u− ψ(u− η) · ∇u∞,

− ψ(ψ − 1)(u∞ − η∞) · ∇u∞ − ψ′u∞,

div u = 0,

m
dη

dt
+

∫
∂Ω

S(u, p)νdσ +mψ′η∞ = 0,

J
dω

dt
+

∫
∂Ω

x× S(u, p)νdσ + Jψ′ω∞ = 0,

u→ 0 (|x| → ∞),

u|∂Ω = η + ω × x,

u(x, 0) = 0, η(0) = ω(0) = 0.

(1.2)

本講演では小さな (u∞, η∞, ω∞)に対して, 大域解 (u, η, ω)が得られ, その減衰率が安定性問題の摂動の減衰

よりも速いことを報告する. この結果は Hishida[5]によって (1.2)の線型化方程式の初期値問題の生成する発

展作用素の Lp-Lq 評価が得られたことで着想を得たが, [5]とは少し異なる仮定のもとでもこの減衰評価を適

用することができるということも新たな知見である.

2 数学的準備

主結果を述べる前に、いくつかの数学的な準備を行う. 1 < q <∞に対して

Lq
R := {U ∈ Lq(R3)3; U |B = η + ω × x, η, ω ∈ R3},

Xq := {U ∈ Lq
R; divU = 0 in R3}

と定める. Xq はノルム

‖U‖Xq :=
(
‖U‖qq,Ω + ρ‖U‖qq,B

) 1
q

で Banach空間となる. [5]により, pairing

〈U, V 〉R3,ρ =

∫
Ω

U · V dx+ ρ

∫
B

U · V dx

の意味で X∗
q = Xq′ となることが知られている.

また, 関数空間 Zq を

Zq :=
{
V ∈ Lq

R; V |Ω = ∇p, p ∈ Lq
loc(Ω), ∇p ∈ Lq(Ω),

V |B = ηv + ωv × x, ηv = − 1

m

∫
∂Ω

pνdσ, ωv = −J−1

∫
∂Ω

x× (pν)dσ

}
と定めると, Lq

R = Xq ⊕ Zq となることが知られており, これにより有界な射影 P : Lq
R → Xq を定めることが

できる.



(1.2)の線型化方程式 

∂tu−∆u+∇p = 0, div u = 0,

m
dη

dt
+

∫
∂Ω

S(u, p)νdσ = 0

J
dω

dt
+

∫
∂Ω

x× S(u, p)νdσ = 0

u→ 0 (|x| → ∞)

u|∂Ω = η + ω × x.

(2.1)

は Xq 上の常微分方程式
dU

dt
+AU = 0

と書き換えることができる. ここで Aは Stokes-structure作用素と呼ばれ, 次のように定められる:

Dq(A) = {U ∈ Xq ∩W 1,q(R3); u = U |Ω ∈W 2,q(Ω)}
AU = PAU

AU =


−∆u, x ∈ Ω,

1

m

∫
∂Ω

(2Du)νdσ +

(
J−1

∫
∂Ω

y × (2Du)νdσy

)
× x, x ∈ B.

[1]により, −Aは有界解析半群 e−tA を生成することが知られている.

次に Oseen-structure作用素 L+(t)を

Dq(L+(t)) = Dq(A), L+(t)U = AU +B(t)U

B(t)U = P[{ψ(u∞ − η∞) · ∇u}χΩ] for u = U |Ω

と定める. (1.1)の解 (u∞, η∞, ω∞)に
u∞ ∈ L∞(R;Lq0(Ω) ∩ L∞(Ω)) with some q0 ∈ (1, 3)

η∞, ω∞ ∈ L∞(R; R3)

u∞ ∈ Cθ(R; L∞(Ω)), η∞, ω∞ ∈ Cθ(R; R3) with some θ ∈ (0, 1)

(A.1)

を仮定し,

|||U∞||| : = sup
t>0

(‖u∞(t)‖q0,Ω + ‖u∞(t)‖∞,Ω + |η∞(t)|+ |ω∞(t)|) ,

[U∞]θ : = sup
0<s<t

‖u∞(t)− u∞(s)‖∞,Ω + |η∞(t)− η∞(s)|+ |ω∞(t)− ω∞(s)|
(t− s)θ

と定める. このとき, 作用素 L+(t)は次の性質を持つ発展作用素 {T (t, s)}t≥s を生成する:

T (t, τ)T (τ, s) = T (t, s) (s ≤ τ ≤ t), T (t, t) = I in L(Xq),

(t, s) 7−→ T (t, s)F ∈ Xq is continuous for F ∈ Xq,{
T (·, s)F ∈ C1((s,∞);Xq) ∩ C((s,∞);Dq(A)),

∂tT (t, s)F + L+(t)T (t, s)F = 0 for F ∈ Xq, t ∈ (s,∞),



{
T (t, ·)F ∈ C1((−∞, t);Xq),

∂sT (t, s)F = T (t, s)L+(s)F for F ∈ Dq(A), s ∈ (−∞, t).

また (u∞, η∞, ω∞)が ∂Ωに接する,すなわち

ν · (u∞ − η∞ − ω∞ × x)|∂Ω = 0 (A.2)

を満たす時,次のような Lp-Lq 評価が Hishida[5]によって得られた. 　

Proposition 2.1. (A.1),(A.2)を仮定し, |||U∞||| < α, [U∞]θ < β とする.

1. q ∈ (1,∞), r ∈ [q,∞]とする.ある定数 C = C(q, r, α, β, θ,M) が存在し, 任意の t > s, F ∈ Xq に対

して
‖T (t, s)F‖r,R3 ≤ C(t− s)−

3
2 (

1
q−

1
r )‖F‖q,R3 (2.2)

とできる.

2. r1 ∈
(
1, 43

]
, r1 ≤ q ≤ r < ∞ とする. ある定数 C = C(q, r, r1, α, β, θ,M) が存在し, 任意の

t > s, F ∈ Xq に対して

‖∇T (t, s)F‖r,R3 ≤ C(t− s)−
1
2−

3
2 (

1
q−

1
r )(1 + t− s)max{ 1

2 (1−
3
r ),0}‖F‖q,R3

とできる.

3. r2 ∈ [4,∞), 1 < q ≤ r ≤ r2 とする. ある定数 C = C(q, r, r2, α, β, θ,M)が存在し,任意の t > s及び

(Fν)|∂Ω = 0, divF ∈ Lp
R(R3)3 (p ∈ (1,∞))を満たす F ∈ Lq(R3)3×3 に対して

‖T (t, s)PdivF‖r,R3 ≤ C(t− s)−
1
2−

3
2 (

1
q−

1
r )(1 + t− s)max{ 1

2 (
3
q−2),0}‖F‖q,R3 (2.3)

とできる.

4. r1 ∈
(
1, 43

]
, r2 ∈ [4,∞), r1 ≤ q ≤ r ≤ r2 とする.ある定数 C = C(q, r, r1, r2, α, β, θ,M)が存在し,

任意の t > s及び (Fν)|∂Ω = 0, divF ∈ Lp
R(R3)3 (p ∈ (1,∞))を満たす F ∈ Lq(R3)3×3 に対して

‖∇T (t, s)PdivF‖r,R3 ≤ C(t− s)−1− 3
2 (

1
q−

1
r )(1 + t− s)max{ 1

2 (1−
3
r ),0}+max{ 1

2 (
3
q−2),0}‖F‖q,R3

とできる.

　

3 主結果

本研究の主結果の一つ目は, Hishida によって得られた Proposition 2.1 が少し異なる仮定でも得られる

ことである. これから述べる命題では (u∞, η∞, ω∞) は必ずしも ∂Ω に接する必要はない. しかし, extra

velocityu∗ に仮定を要する. (A.2)の代わりに, (u∞, η∞, ω∞)は流量, 一次モーメント及び二次モーメントが



それぞれ 0, すなわち

∫
∂Ω

ν · (u∞ − η∞ − ω∞ × x)dσ =

∫
∂Ω

ν · u∗dσ = 0∫
∂Ω

ν · (u∞ − η∞ − ω∞ × x)xidσ =

∫
∂Ω

ν · u∗xidσ = 0, i ∈ {1, 2, 3},∫
∂Ω

ν · (u∞ − η∞ − ω∞ × x)xixjdσ =

∫
∂Ω

ν · u∗xixjdσ = 0, i, j ∈ {1, 2, 3}

(A.3)

を仮定する. ここで (A.2)=⇒(A.3)に注意する. さらに,　

u∗ ∈ L∞(R; W 1− 1
r ,r(∂Ω)) ∩ Cθ(R; W 1− 1

r ,r(∂Ω)) (with some r > 3) (A.4)

を仮定する. 　

Proposition 3.1. (A.1), (A.3), (A.4) を仮定する. このとき, Proposition 2.1 と同様の結果が成り立つ.

　

もしも (u∞, η∞, ω∞)が (A.2)を満たす時,

U∞ := u∞χΩ + (η∞ + ω∞ × x)χB

とおくと任意の q ∈ [q0,∞)に対して U∞(t) ∈ Xq ∩L∞(R3)が成り立ち, この事実は Proposition 2.1の証明

で用いられる. Proposition 3.1では (A.2)を仮定しないため, 同じことは言えないが, 仮定 (A.4)を課すこと

により, ∂Ω上の関数である u∗(t)がソレノイダルな拡張

ũ∗(t) ∈ W 1,r(B) ⊂ Lq0(B) ∩ L∞(B)

をもつ. このことにより
Ũ∞ := u∞χΩ + (η∞ + ω∞ × x+ ũ∗)χB

は任意の q ∈ [q0,∞)に対して, Ũ∞(t) ∈ Xq ∩ L∞(R3)が成り立ち, Proposition 2.1の証明と同様な議論が

可能になる. (A.4)のヘルダー条件は, この Ũ∞ が Cθ(R; L∞(R3))に属するために必要である.

仮定 (A.3)は dualityを用いた議論を行う際に必要となる. 実際,

Dq(L−(t)) = Dq(A), L−(t)U = A−B(t)U

とおくと, U ∈ Dq(A), V ∈ Dq′(A)に対して

〈L+(t)U, V 〉R3,ρ − 〈U,L−(t)V 〉R3,ρ = −ψ
∫
∂Ω

((ηu + ωu × x) · (ηv + ωv × x))((u∞ − η∞) · ν)dσ

が成り立つ. ここで, U |B = ηu + ωu × x, V |B = ηv + ωv × xである. したがって, (A.3)のもとで, 作用素

L+(t)と L−(t)は pairing〈·, ·〉R3,ρ において共役となる.

また, さらなる仮定
∇u∞ ∈ L∞(R; L3(Ω)) ∩ Cθ

loc(R; L3(Ω)) (A.5)



∇u∞ ∈ L∞(R; Lq0(Ω)) (A.6)

を課し,

|||U∞|||′ := |||U∞|||+ sup
t>0

‖∇u∞(t)‖3,Ω

とおく. 本研究の主結果の二つ目は非線形問題 (1.2)の可解性及び減衰率を導くことである. 　

Theorem 3.2. (A.1), (A.3), (A.4), (A.5), (A.6) を仮定し, [U∞]θ < β とする. このとき, ある定数

α = α(q0, β,M) が存在し, もしも |||U∞|||′ < αならば, 方程式 (1.2)は一意な強解 (u, η, ω)が存在し, さら

にこの解は任意の q ∈ [3,∞], r ∈ [3,∞)に対して t→ ∞で

‖u(t)‖q,Ω = O

(
t
− 3

2

(
1
q0

− 1
q

))
,

‖∇u(t)‖r,Ω + |η(t)|+ |ω(t)| = O
(
t−

3
2q0

) (3.1)

が成り立つ. 　

Remark 1.

1. 定常問題 (1.1)について, もしも u∗ ∈W 1− 1
r ,r(∂Ω)かつ∫
∂Ω

ν · u∗dσ = 0

のとき, Galdi[4]の方法で構成される定常解 (u∞, η∞, ω∞)は

u∞ ∈ Lq0(Ω) ∩ L∞(Ω), ∇u∞ ∈ Lq0(Ω) ∩ L3(Ω)

を満たす. したがって Theorem 3.2は, 特に (A.3)のもとで, この定常解の attainabilityの判定法を与

えるものである. 一方, Theorem 3.2の仮定を満たすような時間周期解の存在定理はまだ研究されてい

ない.

2. Proposition 2.1を用いると, 仮定 (A.1),(A.2),(A.5)のもとで同様の結果を得ることができる. このと

き, (A.4)及び (A.6)を仮定する必要がなくなる.

3. (A.6)はより速い減衰の証明のためだけに必要で, 仮定 (A.1), (A.3), (A.4), (A.5)のもとでも (1.2)の強

解の存在を証明することができる. このとき,(u, η, ω)は任意の q ∈ [3,∞], r ∈ [3,∞)に対して t → ∞

で

‖u(t)‖q,Ω = O
(
t−

3
2 (

1
3−

1
q )
)
,

‖∇u(t)‖r,Ω + |η(t)|+ |ω(t)| = O
(
t−

1
2

)
が成り立つ.

　



4 Theorem 3.2の証明の概略

未知関数 (u, η, ω)に対して
U := uχΩ + (η + ω × x)χB

とおくと, 方程式 (1.2)は次のような Xq 上の常微分方程式に書き換えることができる:

dU

dt
+ L+(t)U = H(U). (4.1)

ただし,

H(U) : = P[{−(u− η) · ∇u}χΩ] + P[{−ψ(u− η) · ∇u∞}χΩ]

+ P[{−ψ(ψ − 1)(u∞ − η∞) · ∇u∞}χΩ]− ψ′U∞.

(U∞ = u∞χΩ + (η∞ + ω∞ × x)χB)

である. すると, U(0) = 0もあり, デュアメルの原理より方程式 (4.1)は

U(t) =

∫ t

0

T (t, τ)H(U)dτ (4.2)

と書き換えることができる. そこで,

(ΛU)(t) :=

∫ t

0

T (t, τ)H(U)dτ

とおき, 関数空間 E を次のように定める:

E := {U ∈ C((0,∞);W 1,3(R3) ∩ L∞(R3));

U(t) ∈ X3, lim
t→0

‖U‖E(t) = 0, ‖U‖E <∞},

‖U‖E(t) : = sup
τ∈(0,t)

τ
1
2 (‖∇U(τ)‖3,R3 + ‖U(τ)‖∞,R3) (t ∈ (0,∞)),

‖U‖E : = sup
t∈(0,∞)

(‖U‖E(t) + ‖U(t)‖3,R3)

Proposition 3.1を用いることで, 次の補題を得る. 　

Lemma 4.1. (A.1), (A.3), (A.4), (A.5) を仮定し, |||U∞|||′ < α, [U∞]θ < β とする. すると, 任意の

U, V ∈ E に対して, ΛU ∈ E で, q0, α, β, θ に依存するある定数 c1, c2, c3, c4 が存在し,

lim
t→0

||ΛU(t)||3,R3 = 0,

||ΛU ||E ≤ c1|||U∞|||′ ||U ||E + c2||U ||2E + c3(|||U∞|||′)2 + c4M |||U∞|||′,

||ΛU − ΛV ||E ≤ (c1|||U∞|||+ c2||U ||E + c2||V ||E) ||U − V ||E .

　



この補題を用いて, 写像 Λと関数空間 E に対して縮小写像の原理を適用することで次の命題が得られる. 　

Proposition 4.2. (A.1), (A.3), (A.4), (A.5)を仮定し, [U∞]θ < β とする. ある定数 α = α(q0, β, θ,M)

が存在し, もしも |||U∞|||′ < αならば, 方程式 (4.2)には一意解 U ∈ E が存在する. 　

また, より速い減衰 (3.1)については次の命題によって得る: 　

Proposition 4.3. (A.1), (A.3), (A.4), (A.5), (A.6)を仮定する. α′ ∈ (0, α]が存在し, もしも |||U∞|||′ <

α′ ならば, 次の式が成り立つ.

‖U(t)‖3,R3 = O

(
t
− 3

2

(
1
q0

− 1
3

))
(4.3)

‖U(t)‖∞,R3 + ‖∇U(t)‖3,R3 = O
(
t−

3
2q0

)
(4.4)

　

これから (4.3)を得るための証明の概略を述べる. (4.2)及び L3-ノルムの三角不等式より

t
3
2

(
1
q0

− 1
3

)
‖U(t)‖3,R3 ≤

4∑
j=1

t
3
2

(
1
q0

− 1
3

) ∫ t

0

‖T (t, τ)Hj‖3,R3dτ

が成り立つ. ここで

H1 := P[{−(u− η) · ∇u}χΩ], H2 := P[{−ψ(u− η) · ∇u∞}χΩ]

H3 := P[{−ψ(ψ − 1)(u∞ − η∞) · ∇u∞}χΩ], H4 := −ψ′U∞

である. Proposition 3.1を用いることで, tに依らないある定数 C を用いて

t
3
2

(
1
q0

− 1
3

) ∫ t

0

(
‖T (t, τ)H2‖3,R3 + ‖T (t, τ)H3‖3,R3 + ‖T (t, τ)H4‖3,R3

)
dτ ≤ C

と評価できる. このとき, Proposition 3.1の代わりに Proposition 2.1を用いる場合,

H3 = Pdiv [{−ψ(ψ − 1)(u∞ − η∞)⊗ u∞}χΩ]

と書き換え, (A.2)より

(u∞ − η∞ − ω∞ × x) · ν|∂Ω = (u∞ − η∞) · ν|∂Ω = 0

が成り立つことから, H3 に対して Proposition 2.1の (2.3)を適用することができる. 一方, Proposition 3.1

を用いる場合, (u∞ − η∞) · ν|∂Ω 6= 0より,H3 に対して (2.3)を適用することはできない. そのため, さらなる

仮定 (A.6)を要し, この仮定のもとで, H3 を (2.2)を用いて評価する. 再び Proposition 3.1を用いると, 定数

c0 を用いて

t
3
2

(
1
q0

− 1
3

) ∫ t

0

‖T (t, τ)H1‖3,R3dτ ≤ c0‖U‖E
(

sup
0<τ<t

τ
3
2

(
1
q0

− 1
3

)
‖U(τ)‖3,R3

)



と評価できる. そこで |||U∞|||′ を小さくとり, ‖U‖E < 1
c0
とすることで,

t
3
2

(
1
q0

− 1
3

)
‖U(t)‖3,R3 ≤ C + c0‖U‖E

(
sup

0<τ<t
τ

3
2

(
1
q0

− 1
3

)
‖U(τ)‖3,R3

)

=⇒
(

sup
0<τ<t

τ
3
2

(
1
q0

− 1
3

)
‖U(τ)‖3,R3

)
≤ C

がいえる. このような議論は absorbing argumentと呼ばれ, 二つ目の減衰率 (4.4)も同様な考え方で証明する

ことができる. 安定性問題では (4.2)に初期値項が現れる一方で, starting problemでは U(0) = 0より (4.2)

に初期値項が現れない. このことが起因して, starting problemでの摂動の減衰が安定性問題でのそれよりも

速いことが証明できる.
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