Self-Propelled motion %17 9 BRAKIZX9 5 Starting Problem
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BE

SIRICZAEMNT 1 D DERIKHELE L, £ DIMNEAIEEMIERMERR A T 72 TN TV BRI T, e OHE
ERIZ & B2 ER{ED self-propelled motion IZ2DWTH R 5. AKiiH TlX Z @ self-propelled motion (253
% starting problem DHFFEIZ & > THLNZMEREBNTS.

1 BA

AT, FAOBUEIISE % 1T > T 5 self-propelled motion %47 5 BRIKIZXHF 5 starting problem (22
WS NKER %S 5. Starting problem & i Finn[2] 12 & - THRIEX 172 M T, JEEMEMRMETRAA
T 3 YOTZE MR DS — D & IR %2 A, WKL Tk U 7= MR DM HE DR < 12 EF7 U, & 2R
DA IS — 2 DM ETEE & 72 2 & &, RN D ERFFIEEENIZ D\ THIR D Ff& I 2234 e TH £ 5 & 5 228 W R
RS 2052256 DTHS. ZOMBENEENIZHENN DI, T OEHMIT attainable & IFFIEH
%. Z O starting problem % Kobayashi-Shibata[6] = & 2 &% G2 RO W HIEME D 43 % Oseen
BED LP-L9 FHMiASFERA & v7z 2 & % 521 T, Galdi-Heywood-Shibata([3] IZ & - TH#k & 17z, Takahashi[8]
12 & o T, starting problem TOEHID ¢ — co TOWERIFLEMMBETOZENL D HE NI LRI NI,
F 72, MUK [alfzEENIZ K35 starting problem 12D\ T ik Takahashi[9] 12 & > TR X 7z,

o DHRTIEWT NS HROEEIIMTH S Z L BRESINTWABY, 5% S self-propelled motion
TIERIAOEE I RFTH b FAARDME) & AHEA/EH %47 5. Self-propelled motion & &, MR DB A1 D
PEFNZH S S, MUKE S IZNIES 23 EE A = XA R ORA L OMEAFEFAIZE > TOAREE 2 HB) 205 [l
HIZNET 2 EIMA S = AL 2 RTER LOHEE 2 extra velocity & R, % Z T, self-propelled motion {2
%9 % starting problem & U T, #IHAREZ CHIMK & KD & £ IZH L LU 72 4RED 5 extra velocity D3R4 12
LFU, »2LILABE T extra velocity D3REZNTHK S 72\ (£ 72 SHFHA I L) BIg e 705 & &, iR D KR
M E DRI 7R extra velocity TR E 5 & 5 REH (F 72 1ZREFE ) self-propelled motion (2R S 2 H»
ESIMIZDNWTH A S, Self-propelled motion (249 % starting problem 122\ T DT Silvestre[7)
WZEBHD0H B, HRZITRAGAELTRNDBE S IZHSFRTH 5856 D self-propelled motion IZX13 % starting
problem ([Z DWW T DL EIT - 72, Z DHFSEIE self-propelled motion {Z%3 % starting problem DME— D
fIFETd 5. REHTIXAKRDERIETH 53545 O self-propelled motion 2349 % starting problem % &\,
WIADIEIRIZEI LU Tl Silvestre & 0 HFRVKEZ L TWAH, AV TR S TH LV E WS fTHL
DIfFEE Rigo TN 5,



WE, BRIKIZERA L, BEN p > 0 &L, AR > THAR ZOREDOPLCEET S, $7,
B :={z e R%|z| < 1}, Q:= {z € R%z| > 1} & L, TNETNIRIAK, FhHRO HEDTWEIEMERT.
F, BRIAD extra velocity u.(x,t) € R3 12 & % self-propelled motion & Z D& H TOFAIE, FikoHE
Uoo (2,1) € R3, JEN poo (,1) € R, BRIKDWMHEHE 10 (1) € R3, BIERAEE woo (1) € R 2 RABIRE L TX

IZHES:
Ottioo + (Uoo — Noo) * Voo = Ao — Voo,

div s, = 0,
d
m e + S(tUoo, Poo)vdo = 0,
dt 89
do (1.1)
J—Oo—l—/ Z X S(Uoos Poo)vdo = 0,
dt o9

Uso — 0 (Jz| = 00),

Uso |0 = Moo + Woo X T + Us.

ZIZT, mFBREOES, JIIEEE— AV T UV, SEIGHT VY NVERT. T4bb,
m= —-p, J = gm]l,

Voo + (V)T
—

S(uoo’poo) = 2DUso — Pool, Duy, =
F7z, (1.1) D& —, — Rl Navier-Stokes FFEXR, HF=RNIFHEBHREAFH, BEURNZAEGREFNZRT.
(1.1) Offclb EE LS OIXTH MR KM TH 5.

Pz FEAE DB ¢ € CH([0,00)) (6o € (0,1)) 1 ¥(0) =0, ¥(t) = 1(t > 1) &ifir=F &L,
M := supjg ooy [V ()| £ 5. B LE, Tk L EREPOMIRLITHIEL TH D, extra velocity o (t)u.(z,t) T
self-propelled motion %175 56, W% 4, £ p, MeHE 7, FHEAEE O £ 92 LIROADK D D!
Byt + (@i — 7j) - Vi = Ai — Vp,

diva = 0,

.

mZ! —|—/ S(w, p)vdo = 0,

Jd—w —|—/ x x S(u, p)vde = 0,
dt 20

=0 (|Jz] = c0),
log =1+ @ X T + u,
a(z,0) = 0, 7(0) = &(0) = 0.

<

INHITRLT



e e, {u,p,n,wt FIROKIZHES:
81&“ + w(uoo - 7700) -Vu — Au + Vp,
=—(u—mn)Vu—1(u—n) Vi,

- 1/1(1# - 1)(uoo - 7700) Vo — "/)/uoo,

divu =0,

m@ + S(u, p)vdo + mi'n. =0
At Jog ’ (1.2)
dw ,

J— + x X S(u,p)vdo + JY'we =0,
dt 29

u— 0 (|z] = c0),
ulog =n+w x z,
u(z,0) =0, n(0) =w(0) =0.

A TIHNE 72 (Yoo, Noos Woo) IR U T, KIRIE (u,n,w) 231354, Z ORI E MM E O EE) O jf
EVEHENZ L ERET S, ZOFHEIF Hishida[b] 12 & - T (1.2) OFRAELAL SRR O HIERTED 4K 5 %
JBAEFZED LP-LI FHiiAF 5 N7z Z & TEHEMER/7DY, 5] LIFADULERBZREDE & TH T OWE i % #
HIT2ZLMTEZL VWD ZLEHRAATHS.

2 HEFNERE
ERREZBARDLHANT, WL DO AN LHEHZITD. 1 < g <oo T LT
L ={U € LY(R*)? Ul =n+wx z, nw e R*},
X, :={U € L}; divU =0 in R%}
EEDD. Xy ld /WA
1
10Ix, = (1010 + plUTE )

T Banach ZE[f & 72 5. [5] IZ & D, pairing

(U,V)Rsyp:/U.de—f—p/U'Vd:r
Q B

DEKRT Xy =Xy LRBIENVALONTVS.
7o, BZER Z, &

Zy:={V € L; Vla=Vp, p € L,.(), Vp € LU(Q),

loc

1 _
V|B:nv Fwy X T, Ny =—— prdo, w, = —J 1/
m Joo a0

x X (pl/)do}

LEDBE, LL =X, B Z, LB ENHMENTEY, TNIZEVERBBEP: LY — X, DB EH
TE5.



(1.2) DB R
du— Au+ Vp =0, divu =0,

m@ + S(u, p)vde =0
dew + / x X S(u,p)vdo =0 (2.1)

u— 0 (Jz] = 00)

ulgo =1+ w X .

& X, RO SR
dU
22 4L AU =
- AU=0

CEEWMRXDIENTES. I T Al Stokes-structure fEFIZ L ITIEH, MO LS IZED SN D:
Dy(A) ={U € X, nWH(R3); u=Ulg € W>(Q)}
AU =PAU

— Au, T € Q,

AU =<¢ 1 .
—/ (2Du)vdo + | J / y X (2Du)vdoy, | X z, x € B.
o0 o

m
[1]ic&k b0, —A FEFRI LR e A ZAERT IR OENTVWS,
IRIZ Oseen-structure fEfHFE L (t) %
Dy(Lo () = Dy(A),  Lo(H)U = AU + B)U

B(t>U = PHW%o - noo) ' VU}XQ] for u = U|Q
EEDD. (1.1) DI (Uoo, oo, Woo) 12

Uoo € LZ(R; L?(Q) N L>°(2)) with some ¢o € (1, 3)
oo, Woo € L(R; R?) (A.1)
Uoo € COR; L®(Q)), oo, woo € CY(R; R?)  with some 0 € (0,1)

ZREL,

MUl : = igg(\luw(t)\lqo,ﬂ + [too () [[oo,0 + 1700 (B)| + |woo (B)])

Ul = sup [0 (£) = too (8)[lo0, + |700 (1) = Thoo (8)] + |woo () = woo(s)]

0<s<t (t—s)°

YEDD, ZOLE EHHE Ly (t) EROWE 2 FOFEAEAE (T(t ) }iss 2EKT

T(t,7)T(r,8) =T(t,s) (s<7<t), T(tt)=T inL(X,),
(t,s) — T'(t,s)F € X, is continuous for F € X,

T(-,8)F € C'((s,00); Xg) N C((5,00); Dg(A)),
T (t,s)F+ Li(t)T(t,s)F =0 for FeX,, te (s 00),



T(t,)F € CH((—00,1); X,),
0,T(t,s)F =T(t,s)Li(s)F for F € D,(A),s € (—o0,t).

F 72 (Uoo, Moo, Weo) MOV T B, DD
V- (Uoo — Moo — Woo X X))o =0 (A.2)
Z i 72 I, IR & S 7 LP-L9 Gl Hishida[5] 12 & > TR S N7z,
Proposition 2.1. (A.1),(A.2) ZIKEL, ||[Ux|ll < o, [Usle <8 &9 5.

1. g€ (1,00),1 € [q,00] £52. HIEHC =Clq, 1,0, 5,0, M) BIFIEL, FEDt > s, F € X, 1T

LT
_3(i1_1
IT(t, $)F|lrps < C(t = )73 G| Pl s (2.2)

L TE5.
2.r1 € (Lilm<qg<r<oo¥dd »HBIEMC = Clgr,r,apB,0,M) BEEL, LED
t>s,FeX, izxdLT

IVT(t,5)Flpps < C(t — )" 2 2G5 (14 £ — >3 020 Pl s

L TE5.
3. 19 €[4,00),1<q<r<ry &93. H2EHC =Cl(q,7,r9,00, 3,0, M) BFLEL, ALED t > s K
(Fu)lon = 0, divF € I(R3)® (p € (1, 00)) Zili7=F F € LIRS (28 LT

|T(t, 5)Pdiv Fl,ps < C(t —s)" 2 20 (1 4 £ — )15 (020} ||, o (2.3)

L TES.
4.ori€(1,3], rmed00), n<q<r<r, 2325 . H5EMC =C(q,r,r1,r2,0,3,0, M) BMHEL,
EEDt> s KU (Fv)|ag =0, divF € LL(R?)? (p € (1,00)) Zii7z3 F € LI(R3)>3 12 LT

IVT (¢, 5)Pdiv |, ps < C(t — s) "~ 2G3) (1 4 ¢ — gymax{2(=3) Opmax{3 (3 -2) 0} )|,

LTES.

3 EHER

AWFE D EFEFR D —DH %, Hishida IZ & - THE & 172 Proposition 2.1 DU RLZZFETHH/ LN D
ZeThd. INhOoBREIMETIE (Uoos Moo, Woo) EHBTUH 0N ITHET 2 HEIXR\. L L, extra
velocityu, (ZMEEET 5. (A.2) DRDDIZ, (Uoos oo, Weo) 1ETER, —IRE—A Y M RTZIRE—A Y IS



TNENh0, $ab5

/V-(uoo—noo—wooxx)doz/ V-uydo =0
99 o0

/ V- (Uoo — Moo — Weo X T)x;do = / V- uyxido =0, ie€{1,2,3}, (A.3)
a0 a0

/ V- (Uoo — Noo — Woo X )T;xjdo = / V- usizido =0, i,j €{1,2,3}
o0 o0
ERETSH. 22T (A2)=(A3) ILHERTS. 51T,
u, € L®(R; W57(00)) N COR; W 7(9Q))  (with some r > 3) (A.4)

ZIRES B,

Proposition 3.1. (A.1), (A.3), (A4) Z2IKETS. TDE&E, Proposition 2.1 & [FAERDFERHEL D LD

HEU D (Uoos Noos Weo) B (A.2) % i 72 T I,
U = Uso XQ T (noo + Woo X ‘T)XB

LB ELRD g € [qo,00) {ZF LT Ux(t) € XgNL®(R3) B30 2B, Z DFFEIE Proposition 2.1 DFEH
THWS 3. Proposition 3.1 Tld (A.2) ZKE LRV, AU IZ LIEFARWY, KE (A4) 28T &
&0, 00 EOBBTH D u.(t) 3V VA RIVIRLiE

@ (t) € WH"(B) ¢ L®(B)N L>®(B)

ZED,. ZDZEIzkD

Uoo = Uso X + (7700 + Woo X T + a*)XB

BEFED q € [qo,00) IEH LT, Us(t) € X, N L®°(R?) ALY 325, Proposition 2.1 OFEH & [A Bk #aHt
R D, (Ad) DAVE—Z1E, 2D Uy 7 CO(R; LO(R3)) 2B T 2 72DITBETH B,
i€ (A.3) 1% duality Z W -2 1T O BT BB 25, FEE,

Dy(L_(1)) = Dy(A), L_()U = A~ B(HU
Y52, Ue Dy(A), VeDy(A) IZsLT
(LU Vs p = (U LV D == [ (Ot 2) - (ot 0 ) (e = ) -2l

DBEOVD, 22T, Ulp=nutwy Xz, ViIp=ny, tw, Xz THD. Lizh>7T, (A3) DL LT, fEHE
Ly(t) & L_(t) \¥ pairing(-, -)gs , IZBWTHEL L 5.

F7, X5 RBRE
Vi € L2(R; L3(Q)NCE (R; L3(Q)) (A.5)



Voo € L®(R; L(Q)) (A.6)

ZRRL,
el 2= [Vl + 510 [ Ve (D).

LB L RO EFERD D HIZIEBHE (1.2) O ROHEEZES 2 TH 5.

Theorem 3.2. (A1), (A.3), (A4), (A5), (A6) ZIEL, [Uslo < B LT 5. ZOLE, boEM
a=al(q, B, M) BEEL, BUD |||Us||| < a2 6iE, AR (1.2) 1&—EREM (u,n,w) BHFIEL, 5
12 Z DIRIITED q € [3,00],7 € [3,00) IZH LTt — 00T

MDD,

Remark 1.
1 SEHME (1.1) 1220WT, LD u, € W5m(5Q) 7o

/ V-uydo =0
o0

D& &, Galdi[4] DAETHER I N EFEIR (Uoo, Moo, Woo) 13
Uso € LI(Q) N L¥(Q), Vs € LP(Q) N L3(Q)

{72 3. U7zH > T Theorem 3.2 1%, FiiZ (A.3) D & T, ZOEHMD attainability OHE L% 5
ZB5EDTHS. —/, Theorem 3.2 DIRE % 72§ & 5 LRHRROGFAEE I EZHEI LT
AN

2. Proposition 2.1 Z A% & {KE (A.1),(A.2),(A.5) Db L THIRDIERZHLZENTES. ZDL
E, (Ad) KU (A6) ZINET BB 55,

3. (A.6) XL DHENHEDIEHI D7D I ITHET, AE (A1), (A3),(A4),(A5) DHELTH (1.2) DR
fROTFAEZRGIAT 22 ENTES. ZDLE (u,n,w) FERED g € [3,00],7 € [3,00) IKHLTt— o0
T

MDD,



4 Theorem 3.2 DFRADMER

RABAE (u,n,w) XL T
U:=uxao+n+wxax)xs

LB, HRA(1.2) RO & 5% X, EOEMS IRACEEMA LI LN TE S:

U
LU = H(U). (4.1)
R,

H(U) : =P{—(u—n) - Vu}xa] + P{—(u — 1) - Vs }xe]
+PH{—Y(¥ — 1)(Uoo — Moo) - Voo f x| — V' Us.

(UOO = Uso X T (7700 + Woo X -T)XB)

ThB. THL,UO0) =085, Fa7 ANOEHE D AR (4.1) 3

U(t) = /0 T(t,7)H(U)dr (4.2)

CEEWMRBIENTES. I T,

(AU)(t) = /O () ()
L BE, BRI B ARD LS ISR D 5:
E :={U € C((0,00); W"3(R?) N L=(R?));
U(t) € X3, lim [|U]| gy = 0, [[U]lm < o0},

1Ullew : = Sl(?t)T%(IIVU(T)II&RaﬂL 1U(T)looms)  (t € (0,00)),
T€(0,

1Ulle:= suwp ([Ulgw +1U®)]sr)

te(0,00)

Proposition 3.1 Z 2 Z & T, IROMEZE 5.

Lemma 4.1. (A.1), (A.3), (A4), (AD) Z2IREL, [[[Us]l] < o, [Uxlo < B E&F5. §5&, F£ED
UV eFE &:j(j-bf, AU € ET, q, o, B, 0 IZMRGF T 25 5 EH C1,C2,C3,C4q ﬁ‘ﬁﬁfb,

lim |[AU(t)]|3.05 = 0,
t—0 ’
IAUE < alllUs|I" 1015 + e2llUNE + ea(|1UsI')? + caM || Uso ]I,

AU = AV < (a1|[lUsol] + e2|[U]| 5 + 2| [V[2) U = V]|



o E VT, B A CBIBZER B2 U THNEGROFEIZEH T 5 Z & TIROMENFL NS,

Proposition 4.2. (A.1), (A.3), (A4), (A5) ZIEL, [Uxlo < B &T5. HDEM a = a(q,B,0,M)
WIEL, BULD ||[Us||] < a5, HREX (4.2) I3 —ER U € E BMFET 5.

F7z, X DHWEE (3.1) 2DV TIHIROMEIZ L > TH5:

Proposition 4.3. (A.1), (A.3), (A4), (A.5), (A.6) ZIKET 5. o € (0,a] EIEL, BLD |||Us||]’ <

o 5IE, IRORDEK D LD,
J0@)lszs = O (w(qo—s)) (43)

[U(1)lsc.25 + IVU@)]ls50 = O (70 (4.4)

Ihhs (4.3) 21957 O DOFHHDBBE &R R 5. (4.2) KT L3 VLD =MAFERLD

o 4 3 L t
A0l < S 17 lsar
= 0

Hy = Pl{~(u =) Valxal, H = P{—p(u— 1) Vicc}xal

Hy :=P{~¢(¢) — 1) (oo — Noo) - Voo }xal, Hia:=—¢'Usx
T» 5. Proposition 3.1 Z WS Z 2T, t IZIRSRWHBEHR C 2T
(%-

LRHIiTE S, ZDL &, Proposition 3.1 D4 b iZ Proposition 2.1 % AW 53154,

e
wl=

t
13 (w3) / (IT(¢, 7) Halls.gs + [Tt 7) Halls g0 + | Tt 7) s o) dr < C
0

H3 = Pdiv [{—¢(¢ - 1)(“00 - 7700) Y UOO}XQ]

LAEEHA, (A2) kb
(Uoo = Too — Woo X @) V| = (Uoss — 7o) * Vo =0
MDD Z 5, Hs (2% LT Proposition 2.1 @ (2.3) Z#Hd 25 Z LA TE%. —J5, Proposition 3.1

BTV BBIE, (oo — Noo) - Voo £ 0 & 0 Hy I LT (2.3) ZHNT 52 LIZTE R, 207b, & 5745
RE (A6) ZEL, ZOREDD & T, Hy % (2.2) ZHWTFHHIIT 2. 5 Proposition 3.1 Z A\ 3 &, EK

Co %ﬂ%l‘\f
t% i-1) / |T(t, 7)Hi |3 redr < col|U||E ( Sup TS(;é)HU(T)S’Rs)



LAHIiCED. T2 T||[Usll| 202D, [U|p < £ £$52ET,

G U@ azs < Ot oV ( sup Tg(qlo%)w(f)ng,w)
o<r<t
é(;,;)
— ( sup T2\ 3 ||U(7')||37R3) <C
o<r<t

BWRB. ZD XD RikiuiL absorbing argument & FEEH, —DHDOEER (4.4) LFRIKREZ R S TIHEHT 5
ZEeNTE L. WEMEMETIZ (4.2) IZHIHEHEA B S —J5 T, starting problem TIZ U(0) =0 &0 (4.2)
WZHIAEEA R NN, 20 Z & HHEE U T, starting problem TOEBOBENLEERETOZN IO B
BN EDEEAT E 5.
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